An Adaptive Information Retrieval System Based on Associative Networks

نویسندگان

  • Helmut Berger
  • Michael Dittenbach
  • Dieter Merkl
چکیده

In this paper we present a multilingual information retrieval system that provides access to Tourism information by exploiting the intuitiveness of natural language. In particular, we describe the knowledge representation model underlying the information retrieval system. This knowledge representation approach is based on associative networks and allows the definition of semantic relationships between domainintrinsic information items. The network structure is used to define weighted associations between information items and augments the system with a fuzzy search strategy. This particular search strategy is performed by a constrained spreading activation algorithm that implements information retrieval on associative networks. Strictly speaking, we take the relatedness of terms into account and show, how this fuzzy search strategy yields beneficial results and, moreover, determines highly associated matches to users’ queries. Thus, the combination of the associative network and the constrained spreading activation approach constitutes a search algorithm that evaluates the relatedness of terms and, therefore, provides a means for implicit query expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Protection Based on Intelligent Distribution Networks with the Help of Network Factorization in the Presence of Distributed Generation Resources

Factorizing a system is one of the best ways to make a system intelligent. Factorizing the protection system, providing the right connecting agents, and transmitting the information faster and more reliably can improve the performance of a protection system and maintain system reliability against distributed generation resources. This study presents a new method for coordinating network protect...

متن کامل

Associative Database for Information Retrieval

An associative database model (AIR) is defined, using Artificial Neural Networks (ANN), based on Interaction Information Retrieval (IR). Retrieval is preceded by an interaction between query and database, and means recalled local memories. It is shown that AIR’s underlying abstract mathematical structure is a matroid and that AIR is in the NP-Class. An implementable model is worked out based on...

متن کامل

An Accommodation Recommender System based on Associative Networks

In this paper we present a natural language interface that allows for easy and intuitive access to tourism information. In particular, we describe the knowledge representation model underlying the information retrieval system based on associative networks and that allows the definition of semantic relationships between domain-intrinsic information items. The network structure is used to define ...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval

Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model.   Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004